

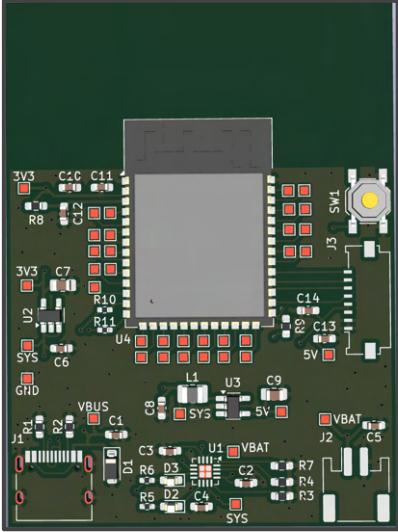
Engineering Portfolio

Haya Dakhil

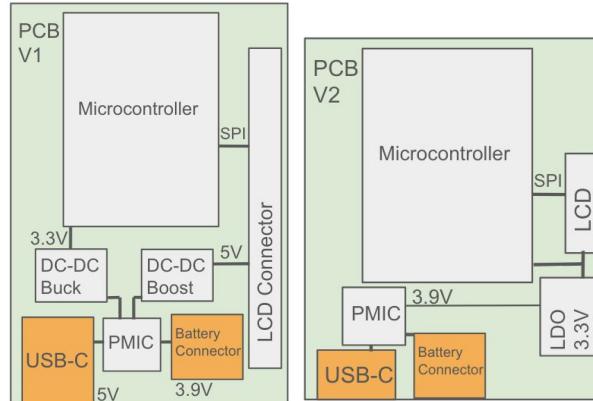
Concentray: PCB

Embedded controller / display board for a desk-mounted focus device with screen timers and task tracking.

Schematic & PCB design, simulations, component selection & BOM, assembly, bring-up, documentation.


Design includes: 4-layer PCB, ESD protection, DC-DC Buck (3.3V) and Boost (5V) Regulators, SPI communication, Smart power path management, header (V1) / FFC (V2) connectors, SWD, via stitching.

Tools used: KiCad, LTSpice, EE lab tools (oscilloscope, DMM, power supply, LPKF Reflow, SMT/stencil soldering).


V1

V2

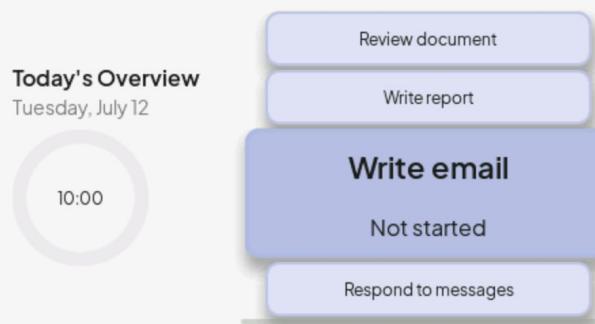
Circuit Block Diagrams

Concentray: Firmware

UI/UX firmware, validated with simulation to bypass the need for microcontroller hardware

Wireframing, UI/UX principles, widget drawing, navigation logic, simulation, documentation

Firmware includes: Timer countdown, scrolling navigation, button animations, start/stop/pause/resume.


Software / Frameworks: C++, LVGL graphics library, Arduino, PlatformIO, SDL.

You have
4 tasks today

Press button to view tasks

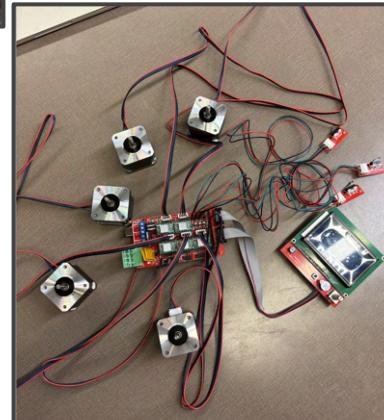
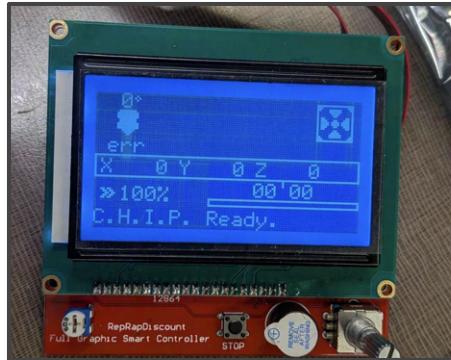
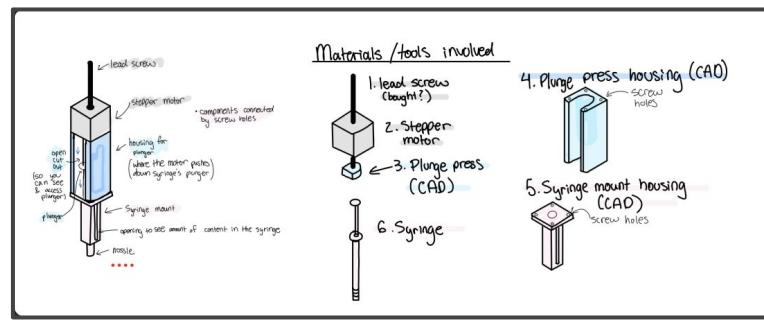
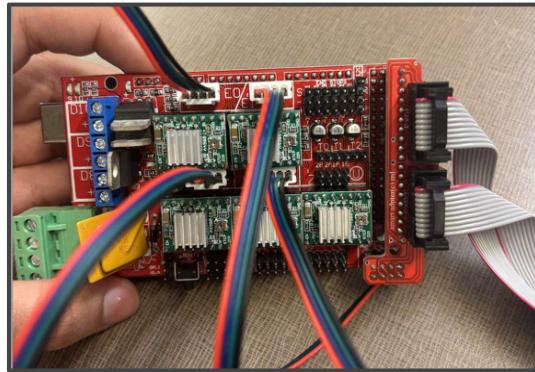
Let's get something done today.

Review document

Review the latest draft and leave concise comments.

Blocked

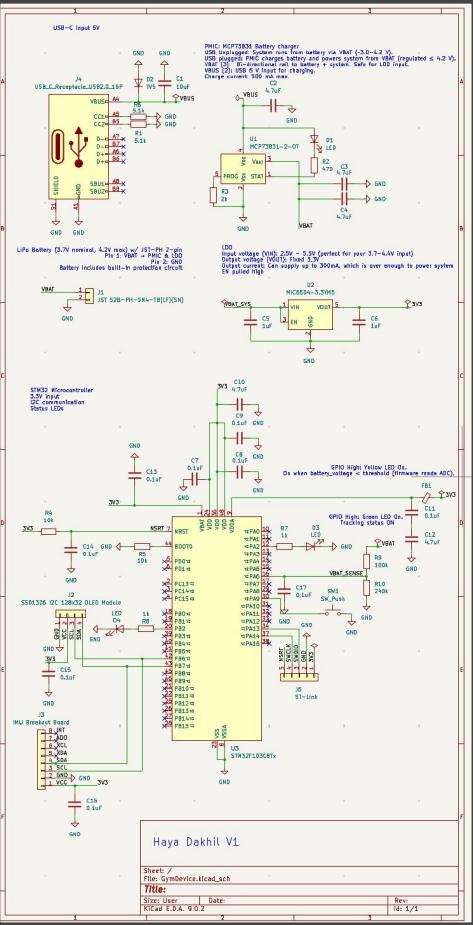
Pause Task





```
 0 @ main.cpp @ main()
 2 #include "ARDUINO.h"
 3
 4 int main() {
 5
 6     while (SDL_PollEvent(&e)) {
 7         if (e.type == SDL_KEYDOWN) {
 8
 9             break;
10
11         }
12
13     }
14
15     case SDL_UP: //arrow down button (rotary encoder up)
16     if (currentScreen == TASK_LIST) {
17
18         taskList.nextTask();
19
20     } else if (currentScreen == TASK_PREVIEW) || currentScreen == TASK_RUNNING || currentScreen == TASK_PAUSED) {
21
22         lv_obj_scroll_by(taskScreen.getDescriptionContainer(), 0, 20, LV_ANIM_ON);
23
24     }
25
26     break;
27
28     case SDL_DOWN: //arrow down button (rotary encoder down)
29     if (currentScreen == TASK_LIST) {
30
31         taskList.nextTask();
32
33     } else if (currentScreen == TASK_RUNNING || currentScreen == TASK_PAUSED) {
34
35         lv_obj_scroll_by(taskScreen.getDescriptionContainer(), 0, -20, LV_ANIM_ON);
36
37     }
38
39     break;
40
41     case SDL_RETURN:
42
43     if (currentScreen == TASK_LIST) {
44
45         lv_text_set_text(taskList.getSelectedTitle(), taskList.getSelectedDescription());
46
47         taskScreen.bindTaskList(taskList, taskList.getSelectedIndex());
48
49         taskScreen.bindTaskList(taskList, taskList.getSelectedIndex());
50
51         currentScreen = TASK_RUNNING;
52
53     } else if (currentScreen == TASK_PAUSED) {
54
55         // without resetting elapsed so preview shows remaining time
56
57         taskScreen.bindTaskList(taskList, taskList.getSelectedIndex());
58
59         currentScreen = TASK_PREVIEW;
60
61     } else if (currentScreen == TASK_PREVIEW) {
62
63         lv_text_set_text(taskUI_lv_main_desc, "From preview");
64
65         lv_obj_clear(lv_text_act);
66
67         taskUI_lv_main_cont();
68
69         taskUI_lv_home_screen();
70
71         currentScreen = HOME;
72
73     }
74
75     break;
76
77 }
```

UW NanoRobotics Group

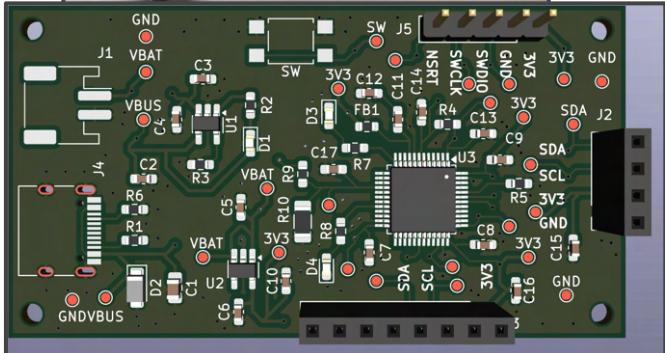
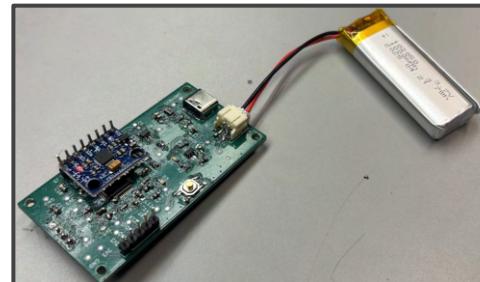
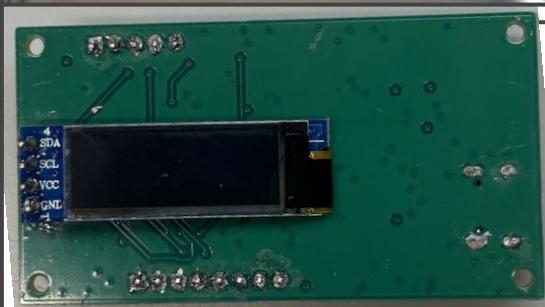
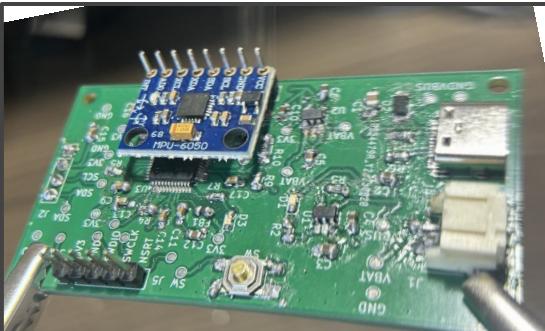

CHIP Project: Developing a conductive hydrodynamic ink printer that uses nanoparticle inks to fabricate PCBs.

PSU Encasing, 5 U-Bracket custom mounts & mechanical drawings, Electronics assembly/validation/measurements, Fluid integration mechanics schematics.


Tools: UW Student Machine Shop, Solidworks, 3D printing, DMM, stepper motor, soldering.

Printer demo

Fitness Rep Tracker - Hardware (Solo Project)

Wrist-mounted STM32 controller board to detect and classify gym exercises with real-time OLED feedback.

Schematic & PCB design, component selection & BOM, assembly, bring-up, voltage division.

Hardware includes: STM32F103 MCU, MPU-6050 IMU (I²C), SSD1306 OLED (I²C), 3.3 V LDO regulation, Li-Ion charging via USB-C, low-battery sense divider, status LEDs, ESD protection, SWD programming/debugging header.

EE software / tools: KiCad, EE lab tools (oscilloscope, function generator, DMM, power supply, soldering).

Fitness Rep Tracker - Firmware

Wrist-mounted STM32 controller board to detect and classify gym exercises with real-time OLED feedback.

Driver development (I²C, UART, SysTick), real-time filtering, calibration routines, adaptive thresholding, finite-state machines, custom OLED UI.

Firmware includes: IMU (MPU6050) driver with calibration, OLED (SSD1306) display driver, rolling buffer stats, low-pass filters, rep detection with peak/refractory logic, exercise-specific configs, state machine (boot → select → calibrate → run), UART logging, systick timing, and peripheral init with fallback/error handling.

Software / Frameworks: C (PlatformIO), STM32 HAL, FreeRTOS-style FSM (bare-metal), I²C, UART, SDL (sim testing).

Adaptive rep detection & rolling statistics

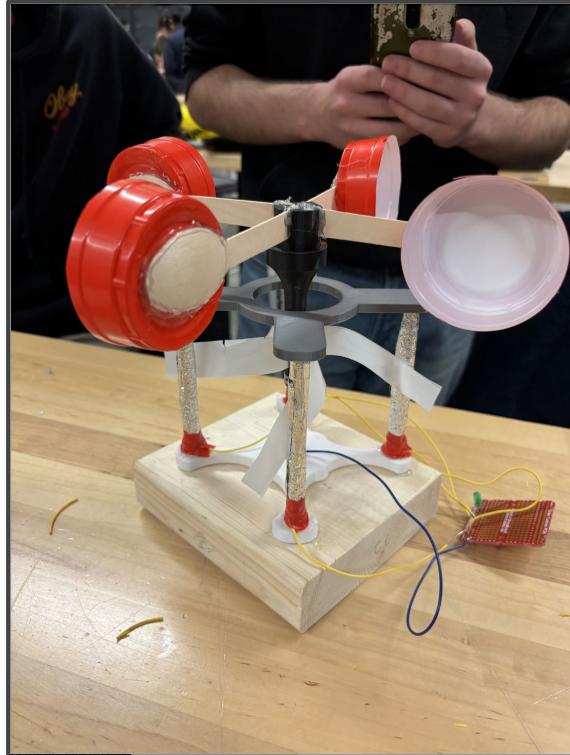
```
src > sensing > C rep_detect.c
88 /**
89  * void rep_detect_end_calibration(exercise_t ex, float *out_mu, float *out_sigma)
90  * {
91  *     if (ex >= EX_COUNT || calib_count[ex] == 0) return;
92  *
93  *     //Compute mean and standard deviation
94  *     float mu = calib_sum[ex] / calib_count[ex];
95  *     float variance = (calib_sum_sq[ex] / calib_count[ex]) - (mu * mu);
96  *     float sigma = sqrtf(fmaxf(variance, 0.0f));
97  *
98  *     //store in runtime context
99  *     REP_CTX[ex].baseline_mu = mu;
100 *     REP_CTX[ex].baseline_sigma = fmaxf(sigma, MIN_SIGMA_FLOOR_G);
101 *     REP_CTX[ex].calibrated = true;
102 *
103 *     //output values
104 *     if (out_mu) *out_mu = mu;
105 *     if (out_sigma) *out_sigma = sigma;
106 * }
107 *
108 * static void update_rolling_stats(exercise_t ex, float new_sample)
109 * {
110 *     if (ex >= EX_COUNT) return;
111 *
112 *     //Add new sample to buffer
113 *     sample_buffer[ex][buffer_index[ex]] = new_sample;
114 *     buffer_index[ex] = (buffer_index[ex] + 1) % ROLLING_BUFFER_SIZE;
115 *
116 *     if (buffer_index[ex] == 0)
117 *     {
118 *         buffer_filled[ex] = true;
119 *     }
120 *
121 *     //compute mean
122 *     float sum = 0.0f;
123 *     uint16_t count = buffer_filled[ex] ? ROLLING_BUFFER_SIZE : buffer_index[ex];
124 *
125 *     for (uint16_t i = 0; i < count; i++)
126 *     {
127 *         sum += sample_buffer[ex][i];
128 *     }
129 *     rep_state[ex].mean = sum / count;
130 *
131 *     //compute standard deviation
132 * }
```

TAB to next move ↵

I²C bus initialization with fallback protection

```
src > drivers > C i2c_bus.c
1 /**
2  * @include "i2c_bus.h"
3  * @include "mcu_pinmap.h"
4  */
5
6 HAL_StatusTypeDef i2c_bus_init(void)
7 {
8     hi2c1.Instance = I2C1;
9     hi2c1.Init.ClockSpeed = I2C_BUS_SPEED_FAST_MODE;
10    hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;
11    hi2c1.Init.OmAddress1 = I2C_ADDRESS;
12    hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
13    hi2c1.Init.DuaAddressMode = I2C_DUALADDRESS_DISABLE;
14    hi2c1.Init.OmAddress2 = 0;
15    hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
16    hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
17
18    if (HAL_I2C_Init(&hi2c1) != HAL_OK)
19    {
20        //fallback to standard mode if fast mode fails
21        hi2c1.Init.ClockSpeed = I2C_BUS_SPEED_STANDARD_MODE;
22        if (HAL_I2C_Init(&hi2c1) != HAL_OK)
23        {
24            return HAL_ERROR;
25        }
26    }
27    return HAL_OK;
28
29
30 HAL_StatusTypeDef i2c_mem_read(uint16_t dev_address, uint16_t reg_address, uint8_t *pdata, uint16_t Size)
31 {
32     return HAL_I2C_Mem_Read(&hi2c1, dev_address, reg_address, I2C_MEMADD_SIZE_8BIT, pdata, Size, HAL_MAX_DELAY);
33 }
34
35 /*@{ TAB to jump here
36  * @brief Writes a sequence of bytes to a device's internal register.
37  */
38 HAL_StatusTypeDef i2c_mem_write(uint16_t dev_address, uint16_t reg_address, uint8_t *pdata, uint16_t Size)
39 {
40     return HAL_I2C_Mem_Write(&hi2c1, dev_address, reg_address, I2C_MEMADD_SIZE_8BIT, pdata, Size, HAL_MAX_DELAY);
41 }
42
43 }
```

MPU6050 IMU Initialization & Configuration


```
src > drivers > C mpu6050.c
23 //Initializes calibration data
24 static float accel_bias[3] = {0.0f, 0.0f, 0.0f};
25 static float gyro_bias[3] = {0.0f, 0.0f, 0.0f};
26
27 //writes a single byte to an mpu register.
28 static HAL_StatusTypeDef MPU6050_WriteRegister(uint8_t reg, uint8_t value)
29 {
30     return I2C_Mem_Write(MPU6050_I2C_ADDR, reg, &value, 1);
31 }
32
33 //reads a single byte from an mpu register.
34 static HAL_StatusTypeDef MPU6050_ReadRegister(uint8_t reg, uint8_t *value)
35 {
36     return I2C_Mem_Read(MPU6050_I2C_ADDR, reg, value, 1);
37 }
38
39 // HAL to ch4: WHO_AM_I generate
40 // initializes MPU
41 HAL_StatusTypeDef mpu6050_init(void)
42 {
43     uint8_t who_am_i;
44     if (MPU6050_ReadRegister(0x75, &who_am_i) != HAL_OK || who_am_i != 0x68)
45     {
46         // LOG("MPU6050 not found or WHO_AM_I mismatched");
47         return HAL_ERROR;
48     }
49
50     // Wake up MPU-6050
51     if (MPU6050_WriteRegister(MPU6050_PWR_MGMT_1, 0x00) != HAL_OK) return HAL_ERROR;
52
53     // set sample rate to I2M_SAMPLE_HZ with sample rate being gyroscope output rate / 1 + SMPLRT_DIV
54     if (MPU6050_WriteRegister(MPU6050_PWR_MGMT_1, 0x00) != HAL_OK) return HAL_ERROR;
55     // gyro output rate = 10Hz (when DLPF is enabled and set to 42Hz or less)
56     // I2M_SAMPLE_HZ = 1000 / 42 = 23.81Hz
57     if (MPU6050_WriteRegister(MPU6050_SMPLRT_DIV, (1000 / I2M_SAMPLE_HZ) - 1) != HAL_OK) return HAL_ERROR;
58
59     // configure DLPF (Digital Low Pass Filter)
60     if (F_EXT_SYNC_SET == 0, DLPF_CFG = 3 (42 Hz) for both accel and gyro
61     if (MPU6050_WriteRegister(MPU6050_CONFIG, 0x03) != HAL_OK) return HAL_ERROR;
62
63     //Configure gyroscope: +/- 250 deg/s (FS_SEL = 0)
64     if (MPU6050_WriteRegister(MPU6050_GYRO_CONFIG, 0x00) != HAL_OK) return HAL_ERROR;
65     GYRO_SCALE_FACTOR = 131.0f; // 131 LSB/deg/s for +/- 250 deg/s
66
67     // configure accelerometer: +/- 2g (APD_SEL = 0)
68 }
```

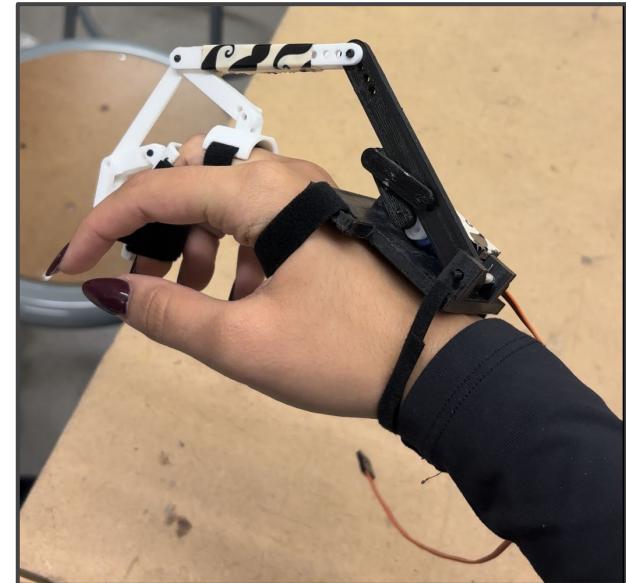
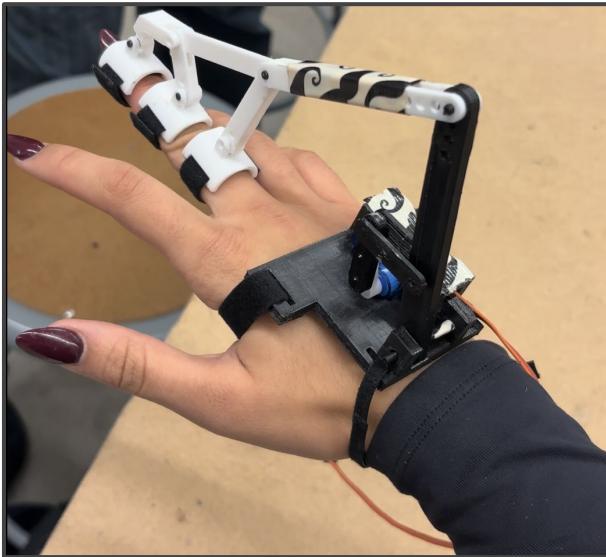
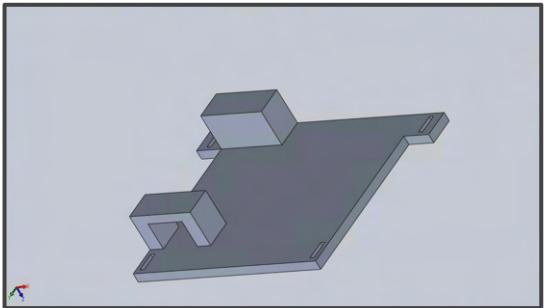
Triboelectric Nano-Generator (TENG)

Won 1st place out of 144 students in the TENG prototyping competition to harvest mechanical energy into electricity.

Solidworks, 3D printing, assembly, materials science, rapid prototyping, cost efficiency

Tools: Soldering, prototyping / building tools (wood block, paper cups, teflon, aluminum, wooden sticks)

[Video Link Here](#)

Bio-Mechatronics Design Team

Developing affordable exoskeleton prosthetics for children with muscular dystrophy.

Base designing & prototyping (ESP32 / servo housing), component / material research, exoskeleton assembly.

Tools: EMG electrodes, Solidworks, 3D printing, servo motors.

